

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 2320-2327

Conjugate addition of aromatic amines to ethenetricarboxylates

Shoko Yamazaki,* Machiko Yamamoto and Akiko Sumi

Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan

Received 4 November 2006; revised 18 December 2006; accepted 19 December 2006 Available online 22 December 2006

Abstract—The conjugate addition of amines is considered to be a useful reaction in synthetic organic chemistry. The reaction of reactive electrophilic olefins, ethenetricarboxylates, and aromatic amines with and without catalytic Lewis acids such as $ZnCl_2$ and $ZnBr_2$ at room temperature gave amine adducts in high yields. The products were converted to α -amino acid, DL-aspartic acid derivatives. Using Lewis acids such as $Sc(OTf)_3$ and $Zn(OTf)_2$ at higher temperature (40–80 °C), the reaction of ethenetricarboxylates and *N*-methylaniline gave an aromatic substitution product. A catalytic enantioselective conjugate addition using a chiral Lewis acid was also investigated. For example, the reaction of 1,1-diethyl 2-*tert*-butyl ethenetricarboxylate with *N*-methylaniline in the presence of chiral bisoxazoline-Cu(II) complex in THF at -20 °C for 17 h gave an amine adduct in 91% yield and 78% ee. On the other hand, the reaction with aniline and primary aniline derivatives gave adducts with almost no ee%.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The conjugate addition of amines is considered to be a useful reaction in synthetic organic chemistry.¹ The reaction leads to formation of carbon-nitrogen bonds and β-amino acid derivatives.² The conjugate addition reaction sometimes involves reversibility arising from negative reaction entropy.³ The exploration of both kinetically and thermodynamically favorable and synthetically useful systems is of high interest. We are interested in exploring reactivity and utility of highly electrophilic olefins, ethenetricarboxylates 1.⁴ The reaction of 1 and amines may lead to α -amino acid derivatives. Nucleophilic reaction of aromatic amines also involves a selectivity issue for nitrogen addition (C–N bond formation) or aromatic substitution (C–C bond formation). In this work, the reaction of ethenetricarboxylates with aromatic amines, transformation of the aza-Michael adducts to aspartic acid derivatives, and chiral Lewis acid-catalyzed reaction were investigated. Selective formation of a C–N or C–C bond in the presence of Lewis acid has been also found in the reaction of 1 and N-methylaniline.

2. Results and discussion

The reaction of reactive electrophilic olefins, ethenetricarboxylates 1, and various amines with and without catalytic Lewis acids was investigated. The reaction of ethenetricarboxylates 1a-d and aromatic amines 2a-c in dichloromethane at room temperature overnight and subsequent work-up gave amine adducts **3** in high yields (Eq. 1, Table 1). The products from aniline **2a** and *N*-methylaniline **2b** are stable to silica gel column chromatography. The amine adducts from aliphatic amines such as benzylamine **2c**, pyrrolidine, and *N*-methyl benzylamine are obtained quantitatively as well, however, they are unstable to silica gel column chromatography and partially decomposed to starting materials.⁵ The reaction of diethyl benzylidene malonate (PhCH=C(CO₂Et)₂) with *N*-methylaniline **2b** did not give an adduct in dichloromethane at room temperature with and without ZnCl₂.

Table 1. Reaction of 1 and 2 without Lewis acid in CH_2Cl_2

Entry	Substrate	R^1	\mathbb{R}^2	Amine	R^3	R^4	3 (Yield, %) ^a
1	1a	Et	^t Bu	2a	Н	Ph	3a (98)
2	1a	Et	^t Bu	2b	CH ₃	Ph	3b (91)
3	1b	Et	Et	2a	Н	Ph	3c (88)
4	1b	Et	Et	2b	CH ₃	Ph	3d (100)
5	1c	Et	CH_2Ph	2b	CH ₃	Ph	3e (94 ^b)
6	1d	CH_2Ph	^t Bu	2a	Н	Ph	3f (98)
7	1d	CH_2Ph	^t Bu	2b	CH_3	Ph	3g (61)
8	1d	CH_2Ph	^t Bu	2c	Н	CH_2Ph	3h (100)

^a Isolated yield.

^b A small amount of unreacted **1c** could not be removed.

Keywords: Ethenetricarboxylate; Aromatic amine; Conjugate addition; Lewis acid.

^{*} Corresponding author. E-mail: yamazaks@nara-edu.ac.jp

¹H NMR spectra of a mixture of **1a** and aniline **2a** in CDCl₃ showed the immediate formation of adducts **3a**. On the other hand, the reaction of **1a** and *N*-methylaniline **2b** proceeds slowly as shown in Figure 1. The reaction was not complete after 18 h. The reaction might complete by concentration of the solution, because the reaction without solvent proceeds faster. Equilibrium in solution is assumed. ΔG° differences of **1b+2b** \rightarrow **3d** were calculated as positive values (less stable), +16.0 and +15.4 kcal/mol by B3LYP/6-31G* in the gas phase and SCRF=dipole (solvent CH₂Cl₂), respectively.^{6,7} The compound **3d** was also calculated to have a large dipole moment, μ =9.39 D. The observation that the equilibrium is shifted to the right without solvent can be understood by stabilization of dipole–dipole interactions between molecules of the products **3**.⁸

The reaction of 1a and 2b in the presence of zinc chloride (0.2 equiv) in CDCl₃ at room temperature proceeded further faster than without solvent to give **3b**. The reaction of 1a and

Figure 1. Reaction of 1a and *N*-methylaniline 2b (25 $^{\circ}$ C). Product percentage was estimated by NMR.

Table 2. Reaction of 1 and 2b in the presence of Lewis acid

2b in the presence of $ZnCl_2$, $ZnBr_2$, and $Sc(OTf)_3$ (0.2 equiv) at room temperature gave **3b** in high yields.⁹ Using Lewis acids such as $ZnCl_2$, $Sc(OTf)_3$, and $Zn(OTf)_2$ at higher temperature (40–80 °C), the reaction of **1** and *N*-methylaniline **2b** gave an aromatic substitution product **4a** as the major product (Eq. 2, Table 2).¹⁰ In addition, the reaction of isolated **3b** with Sc(OTf)_3 (0.2 equiv) in CH₂Cl₂ at 40 °C for 4 h gave **4b** in 75% yield.¹¹ The formation of a C–N bond must be reversible and amine adducts **3** are transformed to the stable C–C bond formation in the presence of the Lewis acid at higher temperature. A small amount of compound **5** was isolated from the reaction shown in entries 4 and 5. Compound **5** may be transiently formed during the formation of **4a** and it also shows the reversibility of C–N bond formation.

The amine adducts **3** are considered as β - and α -amino acid equivalents.¹² Product elaboration was attempted. Thus, the amine adducts **3f** and **3h** were converted to DL-aspartic acid derivatives (Eq. 3). Dibenzyl esters **3f** and **3h** were transformed to acetyl products **6a** and **6b** in order to decrease the basicity of nitrogen and increase the stability toward β -elimination of amine. Hydrogenolysis of **6a** and **6b** and subsequent decarboxylation led to DL-aspartic acid derivatives **7a** and **7b** smoothly.

Entry	Substrate	Lewis acid (equiv)	Solvent	Condition	3 (Yield, %)	4 (Yield, %)
1	1a	ZnCl ₂ (0.2)	CH ₂ Cl ₂	rt, ^a 16 h	3b (89)	
2	1a	ZnBr ₂ (0.2)	CH ₂ Cl ₂	rt, ^a 16 h	3b (70)	
3	1a	Sc(OTf) ₃ (0.2)	CH ₂ Cl ₂	rt, ^a 16 h	3b (quant.)	
4	1a	$ZnCl_{2}$ (0.2)	CH ₂ Cl ₂	40 °C, 16 h	3b (11)	4a (37) ^b
5	1a	$ZnCl_{2}$ (0.2)	ClCH ₂ CH ₂ Cl	80 °C, 2 h		4a $(52)^{c}$
6	1a	$Zn(OTf)_{2}$ (0.2)	ClCH ₂ CH ₂ Cl	80 °C, 16 h		4a (42)
7	1a	$Sc(OTf)_{3}(0.2)$	CH ₂ Cl ₂	40 °C, 16 h		4a (58)
8	1a	$Sc(OTf)_{3}$ (0.2)	ClCH ₂ CH ₂ Cl	80 °C, 2 h		4a (75)
9	1b	$ZnCl_{2}$ (0.2)	CH ₂ Cl ₂	rt, ^a 16 h	3c (77)	
10	1b	$Sc(OTf)_{3}$ (0.2)	CH_2Cl_2	40 °C, 18 h		4b (83)
11	1b	Sc(OTf) ₃ (0.2)	ClCH ₂ CH ₂ Cl	80 °C, 17 h		4b (65)
12	1d	$ZnCl_{2}$ (0.2)	CH ₂ Cl ₂	rt, 16 h	3g (77)	
13	1d	$Zn(OTf)_{3}$ (0.2)	ClCH ₂ CH ₂ Cl	40 °C, 16 h	.	4c (82)
14	1d	$Sc(OTf)_{3}$ (0.2)	ClCH ₂ CH ₂ Cl	40 °C, 16 h		4c (85)

^a rt refers to ca. 20–25 °C.

^b Compound **5** (as a diastereomixture) was isolated in 23% yield.

^c Compound **5** was isolated in 8% yield.

Catalytic enantioselective conjugate addition using a chiral Lewis acid was also investigated. Chiral bisoxazolines were first examined as chiral ligands of Lewis acid because the Friedel-Crafts reaction of substrates 1 using the catalysts has been proven to be effective.^{4d} The reaction of 1,1-diethyl 2-tert-butyl ethenetricarboxylate 1a with aniline 2a in the presence of a catalytic amount of chiral bisoxazoline ((S,S)-2,2'-isopropylidene bis-(4-*tert*-butyl-2-oxazoline) **8**) copper(II) complex, **8**-Cu(OTf)₂¹³ (10%) in THF was first examined, however, the reaction gave an adduct with almost no ee%. The reaction of **1a** with *N*-methylaniline **2b** in the presence of 8-Cu(OTf)₂ (10%) in THF at room temperature overnight gave an amine adduct 3b in 79% yield and 40% ee (Eq. 4, Table 3). When the reaction temperature was decreased to -20 °C, the reaction gave an amine adduct **3b** in 91% yield and 78% ee. The reaction did not proceed at -40 °C. Reactions of substrates **1a–d** and *N*-methylanilines 2b and 2d under various reaction conditions such as use of chiral ligands 9^{14} and 10 and other metal triflates were also examined. Use of 8-Zn(OTf)2 also gave similar ee% at room temperature and -20 °C compared to use of 8-Cu(OTf)₂ (entries 6 and 7). By use of 8-Mg(OTf)₂ or 8-Sc(OTf)₃ the reaction proceeded with almost no ee%. Chiral ligands 9 gave similar ee% at room temperature compared to 8 (entries 8 and

Table 3. Reaction of 1 with 2 in the presence of chiral Lewis acid

17), whereas ligands **10** and **11** gave lower ee% (entries 9, 10, 18, and 19). Reactions in dichloromethane have also been examined (entries 4, 5, 20, and 21). Use of CH_2Cl_2 gave similar or lower yields and ee% compared to THF in the most cases. The detailed solvent effects are under investigation. Aniline **2a** as described above and primary aniline derivatives **2e–g** bearing *para* and *ortho*-substituents (4-CF₃, 2-OCH₃, and 2-Cl) gave almost no ee% (Eq. 5).

The obtained amine adducts in enantiomerically enriched form did not give suitable crystals for X-ray analysis and the absolute stereochemistry has not been determined yet.

								_
Entry	Substrate	Amine	Lewis acid	Condition	3 (Yield, %)	ee (%)	$[\alpha]_D$ (°)	
1	1a	2b	8-Cu(OTf) ₂	rt/THF	3b (79)	40	-84	
2	1a	2b	8-Cu(OTf) ₂	-20 °C/THF	3b (91)	78	-163	
3	1a	2b	8-Cu(OTf) ₂	-40 °C/THF	No reaction			
4	1a	2b	8-Cu(OTf) ₂	rt/CH ₂ Cl ₂	3b (53) ^b	69	-126	
5	1a	2b	8-Cu(OTf) ₂	-20 °C/CH ₂ Cl ₂	3b (86) ^b	77	-146	
6	1a	2b	8-Zn(OTf) ₂	rt/THF	3b (56)	49	-110	
7	1a	2b	8-Zn(OTf) ₂	-20 °C/THF	3b (54)	61	-115	
8	1a	2b	9-Cu(OTf) ₂	rt/THF	3b (83)	49	-100	
9	1a	2b	10-Cu(OTf) ₂	rt/THF	3b (56)	39	-64	
10	1a	2b	11- Cu(OTf) ₂	rt/THF	3b (75)	0.9	-5.5	
11	1a	2d	8-Cu(OTf) ₂	rt/THF	3i (74)	75	-110	
12	1a	2d	8-Cu(OTf) ₂	-20 °C/THF	3i (87)	87	-159	
13	1b	2b	8-Cu(OTf) ₂	rt ^a /THF	3d (78)	41	-103	
14	1c	2b	8-Cu(OTf) ₂	rt ^a /THF	3e (75)	43	-61	
15	1d	2b	8-Cu(OTf) ₂	rt/THF	3g (58)	71	-80	
16	1d	2b	8-Cu(OTf) ₂	-20 °C/THF	3g (79)	41	-62	
17	1d	2b	9-Cu(OTf) ₂	rt/THF	3g (68)	58	-81	
18	1d	2b	10-Cu(OTf) ₂	rt/THF	3g (61)	22	-28	
19	1d	2b	$11-Cu(OTf)_2$	rt/THF	3g (78)	18	+25	
20	1d	2b	8-Cu(OTf) ₂	rt/CH ₂ Cl ₂	3g (48)	23	-23	
21	1d	2b	8-Cu(OTf) ₂	$-20\ ^{\circ}\text{C/CH}_{2}\text{Cl}_{2}$	3g (69)	24	-29	

^a The reaction at -20 °C gave inferior yields and ee% to rt.

A small amount of unreacted **1a** could not be removed.

2323

Amine conjugate addition mechanisms in neutral conditions have been studied.^{15,16} The studies suggest that the reaction proceeds with trimeric or dimeric amines. In Lewis acidpromoted amine conjugate addition, it may be also necessary to take into account the trimeric or dimeric forms of amine nucleophiles. Evans and co-workers have proposed a mechanism for the catalytic asymmetric Mukaiyama-Michael reaction of arylidene malonate.¹⁷ However, the proposed facial selectivity is opposite to the Friedel-Crafts/Michael reaction of arylidene malonate and ethenetricarboxylates 1 with indoles because the two faces of the complex may not be simply differentiated.^{4d} We have explained the observed enantioselectivity by the secondary orbital interaction on approach of indole to the less hindered side of bisoxazoline-Cu(II)-coordinated complex of 1.4d The facial selectivity in conjugate addition of amines with bisoxazoline-Cu(II)-coordinated complex of 1 by steric interaction is not straightforward. The diastereomeric interaction of the two faces with amine nucleophile will be further investigated as well as the absolute stereochemistry determination.

One feature of the aromatic amine addition of **1** is that the products are relatively stable at room temperature and to silica gel column chromatography. In the reaction mechanism of β -elimination of amine in neutral and acidic conditions similar to the amine addition process, more molecules of **3** or eliminated amine may participate in the proton transfer step.^{15,16} The acidity of malonate hydrogen and basicity of the amino group facilitate the elimination process. The introduction of an ester group at the 2-position of methylene malonates for a decrease in basicity of the amino group by electron-withdrawing effects and use of aromatic amines seem to increase the stability of the amine adducts toward silica gel column chromatography and room temperature conditions to some degree.

In summary, we have shown the reaction of ethenetricarboxylates with aromatic amines with and without catalytic Lewis acids such as $ZnCl_2$ and $ZnBr_2$ gave amine adducts in high yields. Transformation of the aza-Michael adducts to aspartic acid derivatives was demonstrated. The reaction of **1** and *N*-methylaniline **2b** with Lewis acids such as $Sc(OTf)_3$ and $Zn(OTf)_2$ at higher temperature (40–80 °C) gave an aromatic substitution product preferentially. Chiral Lewis acid-catalyzed reaction of **1** and *N*-methylaniline **2b** gave an amine adduct enantioselectively. A new utility of ethenetricarboxylates in organic synthesis has been demonstrated in this study. Further elaboration of the products as well as determination of the absolute stereochemistry of the chiral products and elucidation of the origin of enantioselectivity is under investigation.

3. Experimental section

3.1. General methods

Melting points are uncorrected. IR spectra were recorded in the FT-mode. ¹H NMR spectra were recorded at 400 MHz. ¹³C NMR spectra were recorded at 100.6 MHz. ¹H chemical shifts are reported in parts per million relative to Me₄Si. ¹³C chemical shifts are reported in parts per million relative to CDCl₃ (77.1 ppm). ¹⁹F chemical shifts are reported in parts per million relative to CFCl₃. ¹³C multiplicities were determined by DEPT and HSQC. Mass spectra were recorded at an ionizing voltage of 70 eV by EI or FAB. HPLC analysis was performed with a UV detector (detection, 254 nm light) and flow rate of 1.0 mL/min using a CHIRALPAK AS-H (0.46 cm×250 mm) column at 30 °C. Optical rotations were measured with a 1 cm i.d.×10 cm cell. All reactions were carried out under a nitrogen atmosphere.

3.2. Typical experimental procedure (Table 2, entry 1)

To a solution of **1a** (272 mg, 1.0 mmol) in dichloromethane (1.8 mL) were added *N*-methylaniline **2b** (107 mg, 0.11 mL, 1.0 mmol) and ZnCl₂ (27 mg, 0.2 mmol) at 0 °C. The mixture was allowed to warm to room temperature and stirred overnight (16 h). The reaction mixture was quenched by water and then saturated aqueous NaHCO₃. The mixture was extracted with dichloromethane and the organic phase was washed with water, dried (Na₂SO₄), and evaporated in vacuo. The residue was purified by column chromatography over silica gel with hexane–ether as eluent to give **3b** (338 mg, 89%).

3.2.1. Compound 3b. R_f =0.7 (hexane–ether=1:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.07 (t, J=7.1 Hz, 3H), 1.28 (t, J=7.1 Hz, 3H), 1.35 (s, 9H), 2.79 (s, 3H), 3.94–4.09 (m, 2H), 4.16–4.27 (m, 2H), 4.17 (d, J=11.4 Hz, 1H), 5.06 (d, J=11.4 Hz, 1H), 6.80 (tt, J=7.2, 1.0 Hz, 1H), 6.93 (dd, J=88, 0.9 Hz, 2H), 7.20–7.25 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.91 (q), 14.08 (q), 27.99 (q), 33.64 (q), 52.56 (d), 61.76 (t), 61.83 (t), 63.76 (d), 82.18 (s), 115.28 (d), 119.02 (d), 128.91 (d), 150.03 (s), 167.06 (s), 167.36 (s), 168.67 (s); IR (neat) 2982, 1752, 1721, 1602, 1502, 1369, 1291, 1255, 1147, 1032 cm⁻¹; MS (EI) m/z 379 (M⁺, 18), 278 (100), 160 (54%); HRMS M⁺ 379.1996 (calcd for C₂₀H₂₉NO₆ 379.1995).

3.2.2. 1-*tert*-Butyl 2,2-diethyl 1-(phenylamino)ethane-1,2,2-tricarboxylate (3a). R_f =0.6 (hexane–ether=1:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.23 (t, *J*=7.1 Hz, 3H), 1.31 (t, *J*=7.1 Hz, 3H), 1.42 (s, 9H), 4.02 (d, *J*=5.2 Hz, 1H), 4.12–4.28 (m, 4H), 4.64 (d, *J*=5.2 Hz, 1H), 6.69–6.72 (m, 2H), 6.76 (tt, *J*=7.3, 1.0 Hz, 1H), 7.16–7.21 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.07 (q), 14.14 (q), 27.89 (q), 54.24 (d), 57.00 (d), 61.79 (t), 61.87 (t), 82.78 (s), 113.99 (d), 118.82 (d), 129.34 (d), 146.65 (s), 167.23 (s), 167.76 (s), 169.83 (s); IR (neat) 3386, 2980, 1735, 1604, 1509, 1370, 1255, 1155 cm⁻¹; MS (EI) *m*/*z* 365 (M⁺, 23), 264 (100%); HRMS M⁺ 365.1839 (calcd for C₁₉H₂₇NO₆ 365.1838).

3.2.3. Triethyl 1-(phenylamino)ethane-1,2,2-tricarboxylate (3c). $R_f = 0.5$ (hexane-ether=1:1); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.22 (t, J=7.1 Hz, 3H), 1.23 (t, J=7.1 Hz, 3H), 1.29 (t, J=7.1 Hz, 3H), 4.05 (d, J= 5.3 Hz, 1H), 4.11–4.28 (m, 6H), 4.74 (d, J=5.3 Hz, 1H), 6.70–6.73 (m, 2H), 6.77 (tt, J=7.4, 1.0 Hz, 1H), 7.16–7.21 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.02 (q), 14.08 (q), 54.22 (d), 56.56 (d), 61.91 (t), 61.96 (t), 114.01 (d), 119.01 (d), 129.37 (d), 146.36 (s), 167.16 (s), 167.66 (s), 171.04 (s); IR (neat) 3387, 2983, 1734, 1604, 1510, 1371, 1255, 1178, 1030 cm⁻¹; MS (FAB) *m/z* 338 (M+H)⁺; HRMS (M+H)⁺ 338.1600 (calcd for C₁₇H₂₄NO₆ 338.1604).

3.2.4. Triethyl 1-(*N*-methyl-*N*-phenylamino)ethane-1,2,2-tricarboxylate (3d). R_f =0.6 (hexane–ether=1:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.05 (t, *J*=7.1 Hz, 3H), 1.18 (t, *J*=7.1 Hz, 3H), 1.27 (t, *J*=7.1 Hz, 3H), 2.78 (s, 3H), 3.92–4.26 (m, 4H), 4.22 (d, *J*=11.2 Hz, 1H), 5.17 (d, *J*=11.2 Hz, 1H), 6.81 (tt, *J*=7.3, 1.0 Hz, 1H), 6.92–6.94 (m, 2H), 7.21–7.26 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.80 (q), 13.99 (q), 14.22 (q), 33.50 (q), 52.47 (d), 61.37 (t), 61.75 (t), 61.83 (t), 62.63 (d), 114.93 (d), 119.04 (d), 128.96 (d), 149.59 (s), 166.76 (s), 167.26 (s), 169.68 (s); IR (neat) 2983, 1734, 1600, 1505, 1369, 1261, 1175, 1028 cm⁻¹; MS (EI) *m*/*z* 351 (M⁺, 42), 278 (100%); HRMS M⁺ 351.1689 (calcd for C₁₈H₂₅NO₆ 351.1682).

3.2.5. 1-Benzyl 2,2-diethyl 1-(N-methyl-N-phenylamino)ethane-1,2,2-tricarboxylate (3e). $R_f=0.4$ (hexaneether=2:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.06 (t, J=7.1 Hz, 3H), 1.24 (t, J=7.1 Hz, 3H), 2.69 (s, 3H), 3.93–4.09 (m, 2H), 4.13–4.25 (m, 2H), 4.23 (d, J=11.4 Hz, 1H), 5.05 (d, J=12.5 Hz, 1H), 5.19 (d, J=12.5 Hz, 1H), 5.24 (d, J=11.4 Hz, 1H), 6.82 (tt, J=7.3, 0.9 Hz, 1H), 6.91 (d, J=8.1 Hz, 2H), 7.15-7.17 (m, 2H), 7.20–7.29 (m, 5H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.86 (q), 13.99 (q), 33.48 (q), 52.48 (d), 61.82 (t), 61.91 (t), 62.84 (d), 66.87 (t), 115.22 (d), 119.26 (d), 128.02 (d), 128.20 (d), 128.44 (d), 129.03 (d), 135.47 (s), 149.63 (s), 166.71 (s), 167.20 (s), 169.50 (s); IR (neat) 2982, 1734, 1600, 1505, 1455, 1370, 1260, 1227, 1166, 1114, 1032 cm⁻¹; MS (EI) m/z 413 (M⁺, 1.6), 351 (49), 278 (100%); HRMS M⁺ 413.1842 (calcd for C₂₃H₂₇NO₆ 413.1838).

3.2.6. 1-*tert*-Butyl 2,2-dibenzyl 1-(phenylamino)ethane-1,2,2-tricarboxylate (3f). R_f =0.6 (hexane–ether=1:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.36 (s, 9H), 4.15 (d, J=5.1 Hz, 1H), 4.67 (d, J=5.1 Hz, 1H), 5.10 (d, J=12.3 Hz, 1H), 5.16 (d, J=12.3 Hz, 2H), 5.23 (d, J=12.4 Hz, 1H), 6.66 (d-like, J=7.5 Hz, 2H), 6.76 (t-like, J=7.3 Hz, 1H), 7.14–7.18 (m, 2H), 7.23–7.34 (m, 10H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 27.85 (q), 54.28 (d), 57.06 (d), 67.53 (t), 67.62 (t), 82.91 (s), 114.07 (d), 118.93 (d), 128.28 (d), 128.39 (d), 128.45 (d), 128.52 (d), 128.59 (d), 128.68 (d), 129.34 (d), 135.04 (s), 135.16 (s), 146.49 (s), 166.99 (s), 167.47 (s), 169.65 (s); IR (neat) 3388, 3033, 2988, 1739, 1603, 1506, 1456, 1370, 1256, 1152 cm⁻¹; MS (FAB) *m*/*z* 490 (M+H)⁺; HRMS (M+H)⁺ 490.2237 (calcd for C₂₉H₃₂NO₆ 490.2230).

3.2.7. 1-*tert*-Butyl 2,2-dibenzyl 1-(*N*-methyl-*N*-phenylamino)ethane-1,2,2-tricarboxylate (3g). R_f =0.6 (hexane-ether=2:1); pale yellow crystals; mp 82–84 °C;

¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.31 (s, 9H), 2.73 (s, 3H), 4.31 (d, J=11.4 Hz, 1H), 4.87 (d, J=12.2 Hz, 1H), 5.00 (d, J=12.2 Hz, 1H), 5.07 (d, J=11.4 Hz, 1H), 5.14 (d, J=12.4 Hz, 1H), 5.22 (d, J=12.4 Hz, 1H), 6.81 (tt, J=7.1, 0.9 Hz, 1H), 6.87 (dd, J=8.8, 0.9 Hz, 2H), 7.07-7.09 (m, 2H), 7.17–7.34 (m, 10); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 27.96 (q), 33.84 (q), 52.59 (d), 63.88 (d), 67.45 (t), 67.50 (t), 82.30 (s), 115.42 (d), 119.15 (d), 128.24 (d), 128.33 (d), 128.39 (d), 128.49 (d), 128.61 (d), 128.94 (d), 135.02 (s), 135.29 (s), 149.90 (s), 166.80 (s), 167.10 (s), 168.48 (s); IR (KBr) 2979, 1747, 1727, 1599, 1503, 1455, 1367, 1304, 1261, 1235, 1154 cm⁻¹; MS (EI) m/z 503 (M⁺, 1.4), 405 (51), 187 (63), 159 (76), 141 (89), 59 (100%); HRMS M⁺ 503.2309 (calcd for C₃₀H₃₃NO₆ 503.2308); Anal. Calcd for C₃₀H₃₃NO₆: C, 71.55; H, 6.61; N. 2.78. Found: C, 71.25; H, 6.67; N, 2.80.

3.2.8. 1-*tert*-Butyl 2,2-dibenzyl 1-(benzylamino)ethane-1,2,2-tricarboxylate (3h). R_f =0.4 (hexane–ether=1:2); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.41 (s, 9H), 3.70 (d, *J*=13.0 Hz, 1H), 3.84 (d, *J*=7.1 Hz, 1H), 3.96 (d, *J*=13.0 Hz, 1H), 3.97 (d, *J*=7.1 Hz, 1H), 5.09– 5.30 (m, 2H), 7.20–7.35 (m, 15H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 27.97 (q), 52.28 (t), 55.45 (d), 60.26 (d), 67.25 (t), 67.30 (t), 82.20 (s), 127.11 (d), 128.27 (d), 128.33 (d), 128.35 (d), 128.57 (d), 135.28 (s), 135.34 (s), 139.72 (s), 167.26 (s), 167.45 (s), 171.19 (s); IR (neat) 3344, 3032, 2977, 1738, 1497, 1456, 1369, 1259, 1152 cm⁻¹; MS (EI) *m/z* 398 (M⁺–NH₂Ph, 16), 107 (H₂NCH₂Ph, 45), 91 (CH₂Ph, 100%).

3.2.9. 1-*tert*-Butyl 2,2-diethyl 1-(*N*-(4-chlorophenyl)-*N*methylamino)ethane-1,2,2-tricarboxylate (3i). R_f =0.4 (hexane–ether=2:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.09 (t, *J*=7.1 Hz, 3H), 1.28 (t, *J*=7.1 Hz, 3H), 1.36 (s, 9H), 2.76 (s, 3H), 3.97–4.11 (m, 2H), 4.15 (d, *J*=11.4 Hz, 1H), 4.17–4.29 (m, 2H), 4.99 (d, *J*=11.4 Hz, 1H), 6.83–6.87 (m, 2H), 7.16–7.20 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.98 (q), 14.07 (q), 28.01 (q), 33.79 (q), 52.47 (d), 61.84 (t), 61.93 (t), 63.72 (d), 82.47 (s), 116.32 (d), 123.87 (s), 128.78 (d), 148.62 (s), 166.95 (s), 167.20 (s), 168.34 (s); IR (neat) 2981, 1732, 1597, 1498, 1369, 1258, 1154, 1034 cm⁻¹; MS (EI) *m/z* 415 (M⁺, 12), 413 (M⁺, 34), 314 (83), 312 (100), 194 (78%); HRMS M⁺ 413.1602 (calcd for C₂₀H₂₈³⁷ClNO₆ 415.1576).

3.2.10. 1-tert-Butyl 2,2-diethyl 1-(4-(trifluoromethyl)phenylamino)ethane-1,2,2-tricarboxylate (3j). $R_f=0.4$ (hexane-ether=1:1); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.22 (t, J=7.1 Hz, 3H), 1.31 (t, J=7.1 Hz, 3H), 1.42 (s, 9H), 4.04 (d, J=4.9 Hz, 1H), 4.12-4.24 (m, 2H), 4.26 (q, J=7.1 Hz, 2H), 4.68 (d, J=4.9 Hz, 1H), 6.72 (d, J=8.4 Hz, 2H), 7.42 (dq, J=8.4, 0.6 Hz, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.05 (CH₃), 14.12 (CH₃), 27.88 (CH₃), 53.80 (CH), 56.24 (CH), 61.99 (CH₂), 62.07 (CH₂), 83.25 (C), 113.02 (CH), 120.39 (q, J_{CF}=33 Hz, C), 124.84 (q, J_{CF}=270 Hz, C), 126.73 (q, J_{CF}=3.8 Hz, CH), 149.31 (C), 167.00 (C), 167.74 (C), 169.24 (C); ¹⁹F NMR (376 MHz, CDCl₃) -61.71; IR (neat) 3383, 2983, 1739, 1618, 1535, 1371, 1330, 1156, 1113, 1067 cm⁻¹; MS (EI) m/z 433 (M⁺, 12), 332 (100%); HRMS M⁺ 433.1720 (calcd for C₂₀H₂₆F₃NO₆ 433.1712).

3.2.11. 1-*tert*-Butyl 2,2-diethyl 1-(2-methoxyphenylamino)ethane-1,2,2-tricarboxylate (3k). R_f =0.5 (hexane-ether=1:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.24 (t, *J*=7.4 Hz, 3H), 1.30 (t, *J*=7.1 Hz, 3H), 1.41 (s, 9H), 3.83 (s, 3H), 4.03 (d, *J*=5.7 Hz, 1H), 4.12– 4.28 (m, 4H), 4.65 (d, *J*=5.7 Hz, 1H), 6.69–6.73 (m, 2H), 6.78 (dd, *J*=6.8, 1.6 Hz, 1H), 6.83–6.88 (m, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.07 (q), 14.11 (q), 27.87 (q), 54.38 (d), 55.59 (q), 56.69 (d), 61.75 (t), 61.78 (t), 82.57 (s), 110.01 (d), 110.74 (d), 117.94 (d), 121.10 (d), 136.49 (s), 147.47 (s), 167.19 (s), 167.59 (s), 169.74 (s); IR (neat) 3392, 2980, 1739, 1603, 1516, 1459, 1370, 1253, 1155, 1030 cm⁻¹; MS (EI) *m*/*z* 395 (M⁺, 54), 339 (36), 294 (100%); HRMS M⁺ 395.1944 (calcd for C₂₀H₂₉NO₇ 395.1944).

3.2.12. 1-tert-Butyl 2,2-diethyl 1-(2-chlorophenylamino)ethane-1,2,2-tricarboxylate (31). $R_f=0.5$ (hexaneether=2:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.23 (t, J=7.1 Hz, 3H), 1.32 (t, J=7.1 Hz, 3H), 1.42 (s, 9H), 4.05 (d, J=5.3 Hz, 1H), 4.13-4.31 (m, 4H), 4.69 (br d, J=5.3 Hz, 1H), 5.42 (br s, 1H), 6.67-6.71 (m, 1H), 6.78 (d-like, J=8.1 Hz, 1H), 7.12-7.16 (m, 1H), 7.26 (dd, J=7.8, 1.6 Hz, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.02 (q), 14.10 (q), 27.81 (q), 54.02 (d), 56.68 (d), 61.91 (t), 61.96 (t), 82.92 (s), 112.23 (d), 118.71 (d), 120.40 (s), 127.42 (d), 129.47 (d), 142.77 (s), 166.95 (s), 167.54 (s), 169.25 (s); IR (neat) 3388, 2981, 1739, 1598, 1514, 1370, 1257, 1156, 1035 cm⁻¹; MS (EI) m/z 401 (M⁺, 3.0) 399 (M⁺, 8.4), 298 (45), 100 (30), 57 (100%); HRMS M⁺ 399.1453 (calcd for C₁₉H₂₆³⁵ClNO₆ 399.1449), 401.1446 (calcd for $C_{19}H_{26}^{37}CINO_6$ 401.1419).

3.2.13. 1-tert-Butyl 2,2-diethyl 1-(N-benzyl-N-phenylamino)ethane-1,2,2-tricarboxylate (3m). $R_f=0.7$ (hexane-ether=1:1); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.02 (t, J=7.1 Hz, 3H), 1.26 (t, J=7.1 Hz, 3H), 1.35 (s, 9H), 3.89-3.96 (m, 2H), 4.16-4.25 (m, 2H), 4.20 (d, J=11.2 Hz, 1H), 4.46 (d, J=16.7 Hz, 1H), 4.53 (d, J=16.7 Hz, 1H), 5.21 (d, J=11.2 Hz, 1H), 6.76 (t-like, J=7.1 Hz, 1H), 6.90 (d-like, J=8.1 Hz, 2H), 7.11-7.16 (m, 3H), 7.20–7.22 (m, 4H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.71 (q), 14.05 (q), 27.93 (q), 51.02 (t), 52.85 (d), 61.83 (t), 61.88 (t), 64.51 (d), 82.50 (s), 117.01 (d), 119.60 (d), 126.73 (d), 127.06 (d), 128.27 (d), 128.79 (d), 138.13 (s), 147.86 (s), 167.21 (s), 167.32 (s), 169.05 (s); IR (neat) 2980, 1758, 1733, 1600, 1505, 1369, 1301, 1244, 1152 cm⁻¹; MS (EI) m/z 455 (M⁺, 14) 354 (100%); HRMS M⁺ 455.2300 (calcd for C₂₆H₃₃NO₆ 455.2308).

3.3. Typical experimental procedure (Table 2, entry 8)

To a solution of **1a** (136 mg, 0.5 mmol) in 1,2-dichloroethane (0.9 mL) were added *N*-methylaniline **2b** (54 mg, 54 μ L, 0.5 mmol) and Sc(OTf)₃ (49 mg, 0.1 mmol). The mixture was heated to 80 °C for 2 h. The reaction mixture was cooled to room temperature and quenched by water and then saturated aqueous NaHCO₃. The mixture was extracted with dichloromethane and the organic phase was washed with water, dried (Na₂SO₄), and evaporated in vacuo. The residue was purified as above to give **4a** (143 mg, 75%).

3.3.1. Compound 4a. R_f =0.3 (hexane-ether=2:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.01 (t,

J=7.1 Hz, 3H), 1.27 (t, J=7.1 Hz, 3H), 1.37 (s, 9H), 2.80 (s, 3H), 3.94 (q, J=7.1 Hz, 2H), 4.07 (s, 2H), 4.19–4.24 (m, 2H), 6.52 (d-like, J=8.7 Hz, 2H), 7.08 (d-like, J=8.7 Hz, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.89 (q), 14.09 (q), 27.86 (q), 30.74 (q), 50.96 (d), 55.71 (d), 61.31 (t), 61.73 (t), 81.11 (s), 112.53 (d), 123.75 (s), 129.12 (d), 148.83 (s), 167.57 (s), 168.23 (s), 171.46 (s); IR (neat) 3419, 2980, 1732, 1616, 1524, 1369, 1300, 1149 cm⁻¹; MS (EI) *m/z* 379 (M⁺, 77), 305 (53), 278 (100%); HRMS M⁺ 379.1997 (calcd for C₂₀H₂₉NO₆ 379.1995).

3.3.2. Triethyl 1-(4-(methylamino)phenyl)ethane-1,2,2tricarboxylate (4b). R_f =0.5 (hexane–ether=1:2); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.01 (t, J=7.1 Hz, 3H), 1.19 (t, J=7.1 Hz, 3H), 1.26 (t, J=7.1 Hz, 3H), 2.79 (s, 3H), 3.95 (q, J=7.1 Hz, 2H), 4.00–4.08 (m, 1H), 4.13–4.25 (m, 3H), 4.16 (br s, 2H), 6.52 (d-like, J=8.7 Hz, 2H), 7.09 (d-like, J=8.7 Hz, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.81 (q), 13.98 (q), 30.57 (q), 49.92 (d), 55.55 (d), 61.14 (t), 61.33 (t), 61.77 (t), 112.41 (d), 122.82 (s), 129.16 (d), 149.05 (s), 167.32 (s), 168.14 (s), 172.47 (s); IR (neat) 3419, 2982, 1733, 1616, 1525, 1369, 1300, 1158, 1030 cm⁻¹; MS (EI) *m*/*z* 351 (M⁺, 58), 305 (48), 277 (100%); HRMS M⁺ 351.1699 (calcd for C₁₈H₂₅NO₆ 351.1682); Anal. Calcd for C₁₈H₂₅NO₆: C, 61.52; H, 7.17; N, 3.99. Found: C, 61.37; H, 7.26; N, 3.96.

3.3.3. 1-*tert*-Butyl 2,2-dibenzyl 1-(4-(methylamino)phenyl)ethane-1,2,2-tricarboxylate (4c). R_f =0.4 (hexaneether=1:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.32 (s, 9H), 2.80 (s, 3H), 4.09 (d, *J*=11.9 Hz, 1H), 4.22 (d, *J*=11.9 Hz, 1H), 4.87 (s, 2H), 5.17 (s, 2H), 6.47 (d-like, *J*=8.6 Hz, 2H), 6.98–7.04 (m, 2H), 7.04 (d-like, *J*=8.6 Hz, 2H), 7.20–7.37 (m, 8H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 27.79 (q), 30.65 (q), 50.94 (d), 55.72 (d), 67.03 (t), 67.31 (t), 81.22 (s), 112.55 (d), 123.40 (s), 128.07 (d), 128.08 (d), 128.12 (d), 128.27 (d), 128.38 (d), 128.54 (d), 129.08 (d), 135.13 (s), 135.38 (s), 148.84 (s), 167.30 (s), 167.92 (s), 171.26 (s); IR (neat) 3422, 2979, 1733, 1615, 1524, 1456, 1369, 1294, 1147 cm⁻¹; MS (EI) *m*/*z* 503 (M⁺, 38), 402 (19), 338 (25), 91 (100%); HRMS M⁺ 503.2309 (calcd for C₃₀H₃₃NO₆ 503.2308).

3.3.4. Compound 5 (assumed to be ca. 1:1 diastereomixture). R_f =0.4 (hexane-ether=1:2); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.01 (m, 6H), 1.28 (t, *J*= 7.1 Hz, 6H), 1.33 (s, 9H), 1.36 (s, 9H), 2.75 (s, 3H), 3.91– 4.27 (m, 11H), 5.02 (d, *J*=11.4 Hz, 1H), 6.84 (d, *J*=8.4 Hz, 2H), 7.13 (dd, *J*=8.4, 1.5 Hz, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.89 (q), 14.04 (q), 14.08 (q), 27.81 (q), 27.95 (q), 33.69 (q), 50.85 (d), 52.45 (d), 52.48 (d), 55.56 (d), 61.27 (t), 61.68 (t), 61.76 (t), 61.82 (t), 63.47 (d), 63.59 (d), 81.11 (s), 82.16 (s), 115.07 (d), 115.13 (d), 125.47 (s), 128.78 (d), 149.45 (s), 149.49 (s), 166.92 (s), 166.96 (s), 167.26 (s), 167.36 (s), 168.14 (s), 168.48 (s), 171.26 (s); IR (neat) 2980, 1732, 1612, 1519, 1369, 1301, 1152, 1035 cm⁻¹; MS (EI) *m*/*z* 651 (M⁺, 30), 550 (100%); HRMS M⁺ 651.3257 (calcd for C₃₃H₄₉NO₁₂ 651.3255).

3.3.5. 1-*tert*-Butyl 2,2-dibenzyl 1-(*N*-phenylacetamido)ethane-1,2,2-tricarboxylate (6a). To a solution of 3f (490 mg, 1.0 mmol) in dichloromethane (0.8 mL) were added triethylamine (202 mg, 0.28 mL, 2.0 mmol) and acetyl chloride (157 mg, 0.14 mL, 2.0 mmol) at 0 °C. The mixture was allowed to warm to room temperature and stirred overnight (16 h). The reaction mixture was cooled to 0 °C and water was added to the mixture. The mixture was extracted with dichloromethane and the organic phase was washed with 1 N HCl and saturated NaCl solution, dried (Na₂SO₄), and evaporated in vacuo. The residue was purified by column chromatography over silica gel with hexane– ether as eluent to give **6a** (385 mg, 72%).

 R_f =0.4 (hexane–ether=1:2); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.42 (s, 9H), 1.69 (s, 3H), 4.64 (d, *J*=10.6 Hz, 1H), 5.01 (d, *J*=10.6 Hz, 1H), 5.01 (d, *J*=12.3 Hz, 1H), 5.07 (d, *J*=12.3 Hz, 1H), 5.16 (d, *J*=12.3 Hz, 1H), 5.23 (d, *J*=12.3 Hz, 1H), 7.18–7.34 (m, 15H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 22.67 (q), 27.90 (q), 52.47 (d), 62.81 (d), 67.42 (t), 83.00 (s), 128.15 (d), 128.25 (d), 128.27 (d), 128.30 (d), 128.33 (d), 128.44 (d), 128.55 (d), 128.61 (d), 129.54 (d), 135.23 (s), 135.28 (s), 143.18 (s), 166.98 (s), 167.10 (s), 167.69 (s), 171.37 (s); IR (neat) 2978, 1737, 1673, 1596, 1495, 1370, 1260, 1154 cm⁻¹; MS (EI) *m*/*z* 531 (M⁺, 5.4), 489 (17), 430 (23), 388 (44), 91 (100%); HRMS M⁺ 531.2258 (calcd for C₃₁H₃₃NO₇ 531.2257).

3.3.6. 1-tert-Butyl 2,2-dibenzyl 1-(N-benzylacetamido)ethane-1,2,2-tricarboxylate (6b). $R_f=0.3$ (hexaneether=1:2); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.33 (s, 9H), 1.79 (s, 3H), 4.18 (d, J=17.0 Hz, 1H), 4.21 (d, J=17.0 Hz, 1H), 4.60 (br s, 2H), 5.03 (d, J=12.1 Hz, 1H), 5.10 (d, J=12.0 Hz, 1H), 5.20 (d, J=12.3 Hz, 1H), 5.23 (d, J=12.1 Hz, 1H), 7.10-7.34 (m, 15H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 21.57 (q), 27.82 (q), 51.84 (d), 54.42 (t), 60.93 (d), 67.40 (t), 67.53 (t), 82.67 (s), 127.43 (d), 127.69 (d), 128.22 (d), 128.30 (d), 128.43 (d), 128.53 (d), 128.62 (d), 128.72 (d), 128.94 (d), 135.28 (s), 135.38 (s), 136.26 (s), 167.27 (s), 171.66 (s); IR (neat) 2978, 1733, 1661, 1497, 1456, 1369, 1278, 1154 cm⁻¹; MS (EI) m/z 545 (M⁺, 7.2), 489 (26), 446 (72), 91 (100%); HRMS M⁺ 545.2433 (calcd for C32H35NO7 545.2414).

3.3.7. 3-(*tert*-Butoxycarbonyl)-**3**-(*N*-phenylacetamido)propanoic acid (7a). A mixture of **6a** (320 mg, 0.602 mmol) and 10% Pd–C (64 mg, 10 mol%) in methanol (6.0 mL) was stirred in a hydrogen atmosphere for 17 h at room temperature. The catalyst was removed by filtration (Celite) and washed with methanol. The filtrate was concentrated to give a crude residue. To the residue was added water–ethanol (1:1, 0.6 mL) and the mixture was refluxed for 3 h. The reaction mixture was concentrated in vacuo and extracted with dichloromethane. The organic phase was dried (Na₂SO₄) and evaporated in vacuo. The residue was purified by column chromatography over silica gel with hexane–ether as eluent to give **7a** (139 mg, 75%).

 R_f =0.1 (ether); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.48 (s, 9H), 1.85 (s, 3H), 2.79 (dd, *J*=16.8, 7.1 Hz, 1H), 3.26 (dd, *J*=16.8, 7.1 Hz, 1H), 4.82 (t, *J*=7.1 Hz, 1H), 7.28–7.44 (m, 5H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 22.70 (q), 27.95 (q), 35.01 (t), 59.88 (d), 82.51 (s), 128.37 (d), 128.62 (d), 129.81 (d), 142.38 (s), 168.63 (s), 171.39 (s), 175.84 (s); IR (neat) 2979, 1738, 1626, 1594, 1495, 1394, 1370, 1258, 1156 cm⁻¹; MS (EI) *m*/*z* 307 (M⁺, 5.4), 206 (32), 164 (100%); HRMS M⁺ 307.1419 (calcd for $C_{16}H_{21}NO_5$ 307.1420).

3.3.8. 3-(*tert*-**Butoxycarbonyl**)-**3**-(*N*-**benzylacetamido**)**propanoic acid (7b).** R_f =0.3 (ether); pale yellow crystals; mp 89–90 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.40 (s, 9H), 2.15 (s, 3H), 2.62 (dd, *J*=16.9, 6.0 Hz, 1H), 3.29 (dd, *J*=16.9, 7.4 Hz, 1H), 4.35 (dd, *J*=7.4, 6.0 Hz, 1H), 4.59 (d, *J*=16.8 Hz, 1H), 4.64 (d, *J*=16.8 Hz, 1H), 7.19– 7.38 (m, 5H), 9.22 (br s, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 21.74 (q), 27.85 (q), 34.89 (t), 53.88 (t), 58.03 (d), 82.28 (s), 127.32 (d), 127.96 (d), 128.85 (d), 136.03 (s), 168.41 (s), 171.81 (s), 175.88 (s); IR (KBr) 2980, 1735, 1701, 1607, 1487, 1449, 1420, 1365, 1290, 1180, 1159 cm⁻¹; MS (EI) *m/z* 321 (M⁺, 1.4), 265 (54), 222 (49), 178 (100%); HRMS M⁺ 321.1576 (calcd for C₁₇H₂₃NO₅ 321.1576); Anal. Calcd for C₁₇H₂₃NO₅: C, 63.54; H, 7.21; N, 4.36. Found: C, 63.32; H, 7.21; N, 4.32.

3.4. Typical procedure for Table 3 (entry 2)

A powdered mixture of Cu(OTf)₂ (18 mg, 0.05 mmol) and **8** (16 mg, 0.054 mmol) was dried under vacuum for 1 h. THF (1 mL) was added under N₂ and the solution stirred for 1 h. The mixture was cooled to -20 °C and compound **1a** (0.136 g, 0.5 mmol) in THF (0.4 mL) was added to the mixture and stirred for 15 min, followed by addition of **2b** (54 mg, 0.05 mL, 0.5 mmol). After 17 h the reaction mixture was filtered through a plug of silica gel, washed with Et₂O, dried (MgSO₄), and the solvent removed. The residue was purified by column chromatography over silica gel eluting with hexane–ether to give **3b** (173 mg, 91%). **3b**; HPLC (hexane–^{*i*}PrOH=49:1) minor peak t_{R1} =4.7 min, major peak t_{R2} =6.6 min, 78% ee; $[\alpha]_D^{27}$ –163 (*c* 1.06, CHCl₃).

Compound **3i** (Table 3, entry 12); HPLC (hexane–^{*i*}PrOH= 49:1) minor peak t_{R1} =4.7 min, major peak t_{R2} =6.5 min, 87% ee; $[\alpha]_D^{27}$ –159 (*c* 1.63, CHCl₃).

Compound **3d** (Table 3, entry 13); HPLC (hexane–^{*i*}PrOH= 49:1) minor peak t_{R1} =6.1 min, major peak t_{R2} =8.2 min, 41% ee; $[\alpha]_D^{24}$ –103 (*c* 1.30, CHCl₃).

Compound **3e** (Table 3, entry 14); HPLC (hexane–ⁱPrOH= 49:1) minor peak t_{R1} =7.6 min, major peak t_{R2} =12.1 min, 43% ee; $[\alpha]_D^{23}$ –61 (*c* 1.57, CHCl₃).

Compound **3g** (Table 3, entry 15); HPLC (hexane–^{*i*}PrOH= 49:1) minor peak t_{R1} =6.5 min, major peak t_{R2} =8.1 min, 71% ee; $[\alpha]_{D}^{26}$ -80 (*c* 0.69, CHCl₃).

3.5. ¹H NMR measurements for reactions shown in Figure 1

(a) CDCl₃ or CD₂Cl₂ solution: a NMR sample was prepared by addition of *N*-methylaniline **2b** (36 mg, 37 μ L, 0.33 mmol) (and ZnCl₂ (9 mg, 0.067 mmol)) to a solution of **1a** (90 mg, 0.33 mmol) in CDCl₃ or CD₂Cl₂ (0.6 mL) in a NMR tube. The tube was set into an NMR probe and periodically measured at 25 °C. (b) Neat reaction: *N*-methylaniline **2b** (107 mg, 0.11 mL, 1.0 mmol) was added to **1a** (272 mg, 1.0 mmol) in a flask and stirred at 25 °C. A portion was periodically taken from the mixture and diluted with $CDCl_3$. The ¹H NMR spectrum was measured immediately. The product percentage was calculated by peak area ratios.

Acknowledgements

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government. We are grateful to Professor K. Kakiuchi (Nara Institute of Science and Technology) and Professor S. Umetani (Kyoto University) for mass spectra and elemental analysis. We thank Ms. K. Ohmitsu, Ms. S. Masaki, Ms. M. Tsukada, and Ms. Y. Iwata for experimental help.

Supplementary data

Computational data (the Cartesian coordinate of the optimized geometry of **3d**). Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2006.12.058.

References and notes

- (a) Xu, L.-W.; Xia, C.-G. Eur. J. Org. Chem. 2005, 633; (b) Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron: Asymmetry 2005, 16, 2833.
- (a) Zhuang, W.; Hazell, R. G.; Jørgensen, K. A. Chem. Commun. 2001, 1240; (b) Palomo, C.; Oiarbide, M.; Halder, R.; Kelso, M.; Gómez-Bengoa, E.; Garcia, J. M. J. Am. Chem. Soc. 2004, 126, 9188; (c) Hamashima, Y.; Somei, H.; Shimura, Y.; Tamura, T.; Sodeoka, M. Org. Lett. 2004, 6, 1861; (d) Sakai, T.; Kawamoto, Y.; Tomioka, K. J. Org. Chem. 2006, 71, 4706; (e) Li, K.; Hii, K. K. Chem. Commun. 2003, 1132; (f) Nakama, K.; Seki, S.; Kanemasa, S. Tetrahedron Lett. 2002, 43, 829; (g) Sibi, M. P.; Shay, J. J.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc. 1998, 120, 6615.
- (a) Müller, T. E.; Beller, M. *Chem. Rev.* **1998**, *98*, 675; (b) Beller, M.; Breindl, C.; Eichberger, M.; Hartung, C. G.; Seayad, J.; Thiel, O. R.; Tillack, A.; Trauthwein, H. *Synlett* **2002**, 1579.
- (a) Yamazaki, S.; Kumagai, H.; Takada, T.; Yamabe, S. J. Org. Chem. 1997, 62, 2968; (b) Yamazaki, S.; Yamada, K.; Yamabe, S.; Yamamoto, K. J. Org. Chem. 2002, 67, 2889; (c) Yamazaki, S.; Morikawa, S.; Iwata, Y.; Yamamoto, M.; Kuramoto, K. Org. Biomol. Chem. 2004, 2, 3134; (d) Yamazaki, S.; Iwata, Y. J. Org. Chem. 2006, 71, 739.
- (a) Bartoli, G.; Bartolacci, M.; Giuliani, A.; Marcantoni, E.; Massaccesi, M.; Torregiani, E. J. Org. Chem. 2005, 70, 169;
 (b) Bartoli, G.; Bosco, M.; Marcantoni, E.; Petrini, M.; Sambri, L.; Torregiani, E. J. Org. Chem. 2001, 66, 9052; (c) Graunt, M. J.; Spencer, J. B. Org. Lett. 2001, 3, 25; (d) Toda, F.; Takumi, H.; Nagami, M.; Tanaka, K. Heterocycles 1998, 47, 469.

- 6. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.: Ehara, M.: Tovota, K.: Fukuda, R.: Hasegawa, J.: Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02; Gaussian: Wallingford, CT, 2004.
- (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648; (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785.
- McQuarrie, D. A.; Simon, J. *Physical Chemistry: A Molecular Approach*; University Science Books: California, CA, 1997, Chapter 16.
- The reaction of 1a with benzylphenylamine gave C–N adduct 3m only in 39% yield along with starting materials. This is probably because of the steric hindrance of the amine nucleophile.

- Using various Lewis acid such as ZnCl₂, AlCl₃, and SnCl₄ at higher temperature and longer reaction time, the product yields decreased or the reaction mixture decomposed.
- 11. The reaction of the isolated **3b** with ZnCl₂ (0.2 equiv) in CH₂Cl₂ at room temperature for 17 h and work-up gave the mixture of **3b**, **1a**, and **2b** (ca. 6:1:1). This result also shows the reversibility of C–N bond.
- 12. For other examples, see: Reboule, I.; Gil, R.; Collin, J. *Tetrahedron: Asymmetry* **2005**, *16*, 3881.
- (a) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325;
 (b) Jørgensen, K. A.; Johannsen, M.; Yao, S.; Audrain, H.; Thorhauge, J. Acc. Chem. Res. 1999, 32, 605;
 (c) Jørgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 3558.
- 14. Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030.
- (a) Okumoto, S.; Yamabe, S. J. Org. Chem. 2000, 65, 1544; (b) Pardo, L.; Osman, R.; Weinstein, H.; Rabinowits, J. R. J. Am. Chem. Soc. 1993, 115, 8263.
- 16. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1969, 91, 4211.
- Evans, D. A.; Rovis, T.; Kozlowski, M. C.; Downey, W.; Tedrow, J. S. J. Am. Chem. Soc. 2000, 122, 9134.